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General Test 2

1. [1025] Let a, b ∈ C such that a+ b = a2 + b2 = 2
√

3
3 i. Compute |Re(a)|.

Answer:
1√
2

From a + b = 2
√

3
3 i we can let a = x +

√
3

3 i and b = −x +
√

3
3 i. Then a2 + b2 =

2(i2 +x2) = 2
(
x2 − 1

3

)
= 2
√

3
3 i. So x2 = 1+

√
3i

3 = 2
3e
iπ/3, and x = ±

√
2√
3
·
√

3+i
2 . Since |Re(a)| = |Re(x)|,

the answer is
√

2√
3
·
√

3
2 = 1√

2
.

2. [1026] You are given a dart board with a small circle that is worth 20 points and a ring surrounding
the circle that is worth 11 points. No points are given if you do not hit any of these areas. What is the
largest integeral number of points that cannot be achieved with some combination of hits.
Answer: 189 Because 20 and 11 are relatively prime, the largest number than cannot be expressed
as am+ bn for positive integers a and b is mn−m− n, so the answer is 20 · 11− 20− 11 = 189.

3. [1028] Compute the largest value of r such that three non-overlapping circles of radius r can be inscribed
in a unit square.

Answer:

√
2

1 + 2
√

2 +
√

3
The three circles will be inscribed in such a way that one altitude of the

equilateral triangle formed by the centers of the three circles will coincide with a diagonal of the square,
as in the figure below. Indeed, by the Pigeonhole Principle, one circle must lie tangent to two sides of
the square, and in any orientation other than the one below, the circles can be dilated.

Label the square ABCD starting in the upper left and going clockwise. The line from the center of the
top left circle to A has length

√
2r, and the equilateral triangle formed by the radii has height

√
3r.

Then the line from the base of the equilateral triangle to C has length
√

2 − (
√

2 +
√

3)r. Now, draw
lines from the centers of the two lower circles to C to form four triangles. Observe that these triangles
are identical, with angle π

8 in the lower right. Then

tan
(π

8

)
=
√

2− 1 =
r√

2− (
√

2 +
√

3)r

and solving for r gives the desired answer, or some equivalent expression.

4. [1032] Find the ten smallest x, with x > 1, that satisfy the following relation:

sin(lnx) + 2 cos(3 lnx) sin(2 lnx) = 0

Answer: x = enπ/5 for n = 1, 2, . . . , 10 Set y = lnx, and observe that

2 cos(3y) sin(2y) = sin(3y + 2y)− sin(3y − 2y) = sin(5y)− sin(y),
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so that the equation in question is simply

sin(5y) = 0.

The solutions are therefore

lnx = y =
nπ

5
=⇒ x = enπ/5 for n = 1, 2, . . . , 10.

5. [1040] If r, s, t, and u denote the roots of the polynomial f(x) = x4 + 3x3 + 3x+ 2, find

1
r2

+
1
s2

+
1
t2

+
1
u2

Answer:
9
4

First notice that the polynomial

g(x) = x4

(
1
x4

+
3
x3

+
3
x

+ 2
)

= 2x4 + 3x3 + 3x+ 1

is a polynomial with roots 1
r , 1

s , 1
t ,

1
u . Therefore, it is sufficient to find the sum of the squares of the

roots of g(x). Let s1 denote the sum of the roots of g(x), and let s2 equal the sum of the squares of
the roots of g(x). Since x2 + y2 = (x+ y)2 − 2xy, we have that

a4s1 + a3 = 0 and a4s2 + a3s1 + 2a2 = 0,

where an denotes the coefficient of xn in a polynomial. Therefore, applying this to g(x), we have that

2s1 + 3 = 0 =⇒ s1 = −3
2

2s2 + 3
(
−3

2

)
+ 2(0) = 2s2 −

9
2

= 0 =⇒ s2 =
9
4
.

6. [1056] Let 4ABC be equilateral. Two points D and E are on side BC (with order B,D,E,C), and
satisfy ∠DAE = 30◦. If BD = 2 and CE = 3, what is BC?

B C

A

D E2 3

30◦

Answer: 5 +
√

19 Rotate the figure around A by 60◦ so that C comes at the place of B. Let
B′, C ′, D′, E′ be corresponding points of the moved figure. Since ∠E′AD = ∠E′AC ′ + ∠C ′AD =
∠EAC + ∠BAD = 30◦ = ∠EAD, E′A = EA and DA = D′A, one has E′D = ED. So BC = BD +
DE + EA can be found out if we know E′D. But E′D =

√
E′B2 +BD2 − 2 · E′B ·BD · cos 120◦ =√

19, so BC = 2 +
√

19 + 3 = 5 +
√

19.

B = C ′ C

A

D E

B′

D′

E′
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7. [1088] Two ants, Yuri and Jiawang, begin on opposite corners of a cube. On each move, they can travel
along an edge to an adjacent vertex. Find the probability they both return to their starting position
after 4 moves.

Answer:
49
729

Let the cube be oriented so that one ant starts at the origin and the other at (1, 1, 1).

Let x, y, z be moves away from the origin and x′, y′, z′ be moves toward the origin in each the respective
directions. Any move away from the origin has to at some point be followed by a move back to the
origin, and if the ant moves in all three directions, then it can’t get back to its original corner in 4
moves. The number of ways to choose 2 directions is

(
3
2

)
= 3 and for each pair of directions there are

4!
2!2! = 6 ways to arrange four moves a, a′, b, b′ such that a precedes a′ and b precedes b′. Hence there are
3 · 6 = 18 ways to move in two directions. The ant can also move in a, a′, a, a′ (in other words, make a
move, return, repeat the move, return again) in three directions so this gives 18 + 3 = 21 moves. There
are 34 = 81 possible moves, 21 of which return the ant for a probability of 21

81 = 7
27 . Since this must

happen simultaneously to both ants, the probability is 7
27 ·

7
27 = 49

729 .

8. [1152] Two parallel lines `1 and `2 are on a plane with distance d. On `1 there are infinitely many points
A1, A2, A3, · · · progressing in the same distance: AnAn+1 = 2 for all n. In addition, on `2 there are
also infinite points B1, B2, B3, · · · satisfying BnBn+1 = 1 for all n. Given that A1B1 is perpendicular
to both `1 and l2, express the sum

∑∞
i=1 ∠AiBiAi+1 in terms of d.

Answer: π − tan−1

(
1
d

)
Construct points C1, C2, C3, . . . on `1 progressing in the same direction as

the Ai such that C1 = A1 and CnCn+1 = 1. Thus we have C1 = A1, C3 = A2, C5 = A3, etc., with
C2n−1 = An in general. We can write ∠AiBiAi+1 = ∠C2i−1BiC2i+1 = ∠CiBiC2i+1 − ∠CiBiC2i−1.
Observe that 4CiBiCk (for any k) is a right triangle with legs of length d and k − i, and ∠CiBiCk =
tan−1

(
k−i
d

)
. So ∠CiBiC2i+1 − ∠CiBiC2i−1 = tan−1

(
i+1
d

)
− tan−1

(
i−1
d

)
. The whole sum is therefore

∞∑
i=1

tan−1

(
i+ 1
d

)
− tan−1

(
i− 1
d

)
which has nth partial sum

tan−1

(
n+ 1
d

)
+ tan−1

(n
d

)
− tan−1

(
1
d

)
so it converges to π − tan−1

(
1
d

)
.

9. [1280] Let {ai}i=1,2,3,4, {bi}i=1,2,3,4, {ci}i=1,2,3,4 be permutations of {1, 2, 3, 4}. Find the minimum of
a1b1c1 + a2b2c2 + a3b3c3 + a4b4c4.
Answer: 44 The minimum can be obtained by

1 · 3 · 4 + 2 · 2 · 3 + 3 · 4 · 1 + 4 · 1 · 2 = 12 + 12 + 12 + 8 = 44.

We claim that 44 is optimum. Denote xi = aibici. Since x1x2x3x4 = (1 · 2 · 3 · 4)3 = 29 · 33, xi should
only consist of prime factors of 2 and 3. So between 8 and 12 xi can only be 9.

(a) There are no 9 among xi. Then xi are not in (8, 12). And x1x2x3x4 = 12 · 12 · 12 · 8, so if x1 is
minimum then x1 ≤ 8. Then by the AM-GM inequality x2 + x3 + x4 ≥ 3(x2x3x4)1/3. If we let
(x2x3x4)1/3 = 12y, then x1 = 8y−3, and for y ≥ 1, 8y−3 + 36y attains its minimum at y = 1. So
x1 + x2 + x3 + x4 ≥ 8y−3 + 36y ≥ 44.
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(b) x1 is 9. Then x2x3x4 is divisible by 3 but not 9. So only x2 is divisible by 3 and others are just
powers of 2. x2 can be 3, 6, 12, 24 or larger than 44. Consider the following subcases:

i. x2 = 3: x3x4 = 29, x3 + x4 ≤ 25 + 24 = 48 > 44.
ii. x2 = 6: x3x4 = 28, x3 + x4 ≤ 24 + 24 = 32, x1 + x2 + x3 + x4 ≤ 9 + 6 + 32 = 47.
iii. x2 = 12: x3x4 = 27, x3 + x4 ≤ 24 + 23 = 24, x1 + x2 + x3 + x4 ≤ 9 + 12 + 24 = 45.
iv. x2 = 24: x3x4 = 26, x3 + x4 ≤ 23 + 23 = 16, x1 + x2 + x3 + x4 ≤ 9 + 24 + 16 = 49.

10. [1536] How many functions f that take {1, 2, 3, 4, 5} to itself, i.e. that is permutes the set, satisfy
f(f(f(x))) = f(f(x)) for all x in {1, 2, 3, 4, 5}?
Answer: 756 For any such function f , let A = {n | f(n) = n} be the set of elements fixed by f and
let B = {n | f(n) ∈ A and n /∈ A} be the set of elements that are sent to an element in A, but are
not themselves in A. Finally, let C = {1, 2, 3, 4, 5} \ (A∪B) be everything else. Note that any possible
value of f(f(x)) is in A so A is not empty. We will now proceed by considering all possible sizes of A.

(a) A has one element: Without loss of generality, let f(1) = 1, so we will mutliply our result by
5 at the end to account for the other possible values. Suppose that B has n elements so C has
the remaining 4 − n elements. Since f(f(x)) = 1 for each x so any element c in C must satisfy
f(c) = b for some b in B, because f(c) 6= 1 and the only other numbers for which f(x) = 1 are the
elements of B. This also implies that B is not empty. Conversely, any function satisfying f(c) = b

works, so the total number of functions in this case is 5
∑4
n=1

(
4
n

)
n4−n because there are

(
4
n

)
ways

to choose the elements in B, and each of the 4− n elements in C can be sent to any element of B
(there are n of them). This sum is equal to 5(4 + 6 · 4 + 4 · 3 + 1) = 205, so there are 205 functions
in this case that A has one element.

(b) A has two elements: This is similar to the first case, except that each element in B can now
correspond to one of two possible elements in A, so this adds a factor of 2n. The sum now
becomes

(
5
2

)∑3
n=1

(
3
n

)
2nn3−n = 10(3 · 2 + 3 · 4 · 2 + 8) = 380, so there are 380 functions in this

case.

(c) A has three elements: This is again similar to the prior cases, except there are 3 possible targes
in A, adding a factor of 3n. Then the sum is

(
5
3

)∑2
n=1

(
2
n

)
3nn2−n = 10(2 · 3 + 9) = 150, so there

are 150 functions in this case.

(d) A has four elements: The logic is the same as the prior cases and there are 5(4) = 20 functions in
this case.

(e) A has five elements: The identity function is the only possible function in this case.

Adding together the five cases, we see that there are 205 + 380 + 150 + 20 + 1 = 756 such functions.
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